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1. Introduction

We are interested in determining the electromagnetic fields within closed perfectly conducting cavities
that may contain dielectric or magnetic materials. The vector Helmholtz equation is the appropriate
partial differential equation for this problem. It is well known that the electromagnetic fields in a
cavity can be decomposed into distinct modes that oscillate in time at specific resonant frequencies.
These modes are referred to as eigenmodes, and the frequencies of these modes are referred to as
eigenfrequencies. Our present application is the analysis of linear accelerator components. These
components may have a complex geometry; hence numerical methods are required to compute the
eigenmodes and eigenfrequencies of these components.

The Implicitly Restarted Arnoldi Method (IRAM) is a robust and efficient method for the numerical
solution of the generalized eigenproblem A Bx x= λ , where A  and B  are sparse matrices, x  is an
eigenvector, and λ  is an eigenvalue. The IRAM is an iterative method for computing extremal
eigenvalues; it is an extension of the classic Lanczos method. The mathematical details of the IRAM
are too sophisticated to describe here; instead we refer the reader to [1]. A FORTRAN subroutine
library that implements various versions of the IRAM is freely available, both in a serial version
named ARPACK and parallel version named PARPACK.

In this paper we discretize the vector Helmholtz equation using 1st order H(curl) conforming edge
elements (also known as Nedelec elements). This discretization results in a generalized eigenvalue
problem which can be solved using the IRAM. The question of so-called spurious modes is discussed,
and it is shown that applying a spectral transformation completely eliminates these modes, without any
need for an additional constraint equation. Typically we use the IRAM to compute a small set (n < 30)
of eigenvalues and eigenmodes for a very large systems (N > 100,000).

2. Problem Formulation

We are interested in solving the vector Helmholtz equation in a 3-dimensional inhomogeneous volume
Ω ,

  ∇ × ∇ × − =−µ ω ε1 2 0E E  in Ω ,                                             (1)



with boundary condition �n E× = ∂Ω0 on , where E is the electric field vector, µ  and ε  are the tensor
permeability and permittivity, andω is the radian frequency. Employing the Galerkin procedure using
1st order edge elements denoted by Wi  results in the generalized eigenvalue problem

A Be e= ω 2                                                                    (2)

where e is the N-dimensional vector of degrees-of-freedom and the matrices A and B are given by

A ij i jW WZ Ô “ Ô “
Jz µ 1 ,

t

, B ij i jW WZ z ε ,
t

.                                      (3)

The details of computing the matrices can be found in most finite element textbooks, for example
[2][3]. Using terminology from continuum mechanics, the matrix A is referred to as the stiffness
matrix and the matrix B is referred to as the mass matrix. When µ  and ε  are real, the matrices A and
B are symmetric; the matrix A is semi-definite and the matrix B is positive-definite.

3. A Comment on Spurious Modes

Equation (1) admits to two types of solutions; irrotational field solutions and solenoidal field solutions.
An irrotational field is the gradient of a scalar potential function

Eir Z JÔφ .                                                                 (4)

Inserting (4) into (1) we see that ω Z 0 for irrotational fields. Conversely, by taking the divergence of
(1) we see that if ω ◊ 0 then the field must be solenoidal,

Ô’ ZεEs 0.                                                                (5)

Since the permittivity may not be continuous, equation (5) is best understood in the weak sense: we
multiply (5) by a scalar potential φ  that is zero on the boundary, and then integrate over the domain t
and employ the divergence theorem to yield

ε φEs ’Ô Zz 0
t

.                                                           (6)

Equation (6) states that a solenoidal solution of (1) is orthogonal to every irrotational solution.
Solutions of (1) therefore can be decomposed into irrotational (ω Z 0) and solenoidal (ω ◊ 0)
solutions, with every solenoidal solution being orthogonal to every irrotational solution. An important
property of the vector finite element method is that the discrete Helmholtz equation (2) has the same
decomposition of solutions as the original PDE. Let L Hh Í 1 be the set of standard bi-linear nodal
finite element basis functions, and let the discrete scalar potential be an element of Lh . It can be shown
that the finite element spaces Lh  and Wh are related by Ô ÏL Wh h; therefore the gradient of every nodal
basis function can be written as a linear combination of edge functions [4]. Because of this there exists
exactly K discrete irrotational fields that are gradients of discrete scalar potentials, where K is the



number of internal nodes in the mesh. It can also be shown that these discrete irrotational fields form
the null space of the stiffness matrix A; there are exactly K solutions of (2) with ω Z 0. These are the
so-called spurious modes; they are static solutions of (2) with non-zero divergence. They are
mathematically valid solutions of (2), but they are physically uninteresting. We are interested in the
solenoidal solutions of (2). As in the continuous case, the discrete solenoidal solutions of (2) are
orthogonal to the discrete irrotational solutions according to the inner product u vTB ; this is a basic
property of symmetric generalized eigenvalue problems.

4. Application of ARPACK for Electromagnetic Eigenvalue Problems

In this section we discuss the application of ARPACK, which is a specific implementation of the
IRAM for computing the solenoidal eigenvectors and corresponding eigenvalues of (2). ARPACK
provides several different subroutines depending upon whether the mass matrix B is the identity or
not, whether the matrices A and B are symmetric or not, whether A and B are complex valued or not,
etc. The mass matrix B would reduce to the identity matrix if Cartesian grid finite difference
discretization of the vector Helmholtz equation was used. The matrices A and B would be complex
valued and non-Hermitian if µ  and ε  were complex valued, representing lossy dielectric and magnetic
materials. In our case A and B are real symmetric matrices.

The IRAM is an iterative method for computing a small set of extremal eigenvalues. In ARPACK the
user can select to compute largest algebraic eigenvalues, smallest algebraic eigenvalues, largest
absolute value eigenvalues, or smallest absolute value eigenvalues. ARPACK requires
N O m O m’ H( ) ( )2 storage where N is the dimension of the system and m the desired number of
eigenvalues to compute. The basic user-specified parameters are:

a) N, the dimension of the system
b) m, the desired number of eigenvalues
c) WHICH, a character string denoting which eigenvalues to compute
d) ncv, the number of Lanczos basis vectors to use
e) tol, the numerical tolerance used to determine convergence
f) maxit, the maximum number of iterations

The number of Lanczos vectors must be at least mH1. The optimal choice of ncv with respect to m is
problem dependent and experimentation is required. If the eigenvalues are well separated then
ncv mŸ ’2  is acceptable, where well separated is defined as
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for all  with .
                                                               (7)

The numerical tolerance tol is used in the stopping criteria λ λ λc t ttolJ ¡ ’ , where
λ c  is the computed eigenvalue and λ t  is the exact eigenvalue closest to λ c . It is tempting to make tol a
very small number, however this increases the run time of the problem. If tol is too small convergence
may not occur. It is important to remember that the eigenvalue problem (2) is itself an approximation
to physical reality, so there is little point in computing the eigenvalues of (2) exactly.



The parameter maxit specifies the maximum number of iterations, or restarts, of the IRAM. The
iteration process begins with an initial vector v1, which is usually chosen at random. An Arnoldi
factorization is computed, and the ncv eigenvalues of the ncv ncv“  Arnoldi matrix are computed. This
represents one iteration. The salient feature of the IRAM is the ability to automatically repeat this
process with improved initial vectors vi , where each new vi  is determined by application of a
polynomial in A to the starting vector v1. The repeated update of the starting vector through implicit
restarting is designed to enhance the components of this vector in the direction of the desired
eigenvalues and damp its components in the unwanted directions. The parameters tol and maxit are not
independent; a large number of iterations may be required to converge with a small tolerance.
Fortunately neither tol nor maxit affect the required amount of memory, these parameters only affect
the run time of the calculation.

ARPACK does not require that users actually provide the matrices A and B; instead all that is required
is the action of these matrices. Specifically, the user must provide Ax wÃ , Bx zÃ , and BJ

Ã
1x y .

For small systems the mass matrix B can be factored, however since we are interested in large
problems we employ iterative Krylov-type methods for computing BJ

Ã
1x y . If iterative methods are

used for BJ

Ã
1x y  it is essential that the residual be significantly smaller than the requested

eigenvalue tolerance tol.

We are interested in computing only a few of the solenoidal eigenvectors and corresponding
eigenvalues of (2). Based on the discussion of spurious modes we know that the distribution of the
eigenvalues is as shown in Figure 1.

s1      s2     s3    s4    s5   s6  s7 ...
ω

N-K eigenvalues with
soleniodal eigenvectors

K eigenvalues with
irrotational eigenvectors

Figure 1: Eigenvalue distribution of A Be e= ω 2

As illustrated in Figure 1, the solenoidal modes are not extremal and the IRAM cannot be directly
applied to (2). Instead, a shift-and-invert spectral transformation is applied to enhance convergence to
the desired part of the spectrum. If ( , )x λ  is an eigenpair of ( , )A B , and σ λ◊ , we form a new
eigensystem
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We choose σ  to be between 0 and S1, the smallest non-zero eigenvalue. The algebraically largest
eiganvalues of the transformed system (8) correspond to the eigenvalues imediately to the right of σ
in the original system (2). The zero-valued eigenvalues of the original problem are now the
algebraically smallest eigenvalues of the transformed system. This is illustrated in Figure 2. The
IRAM is applied to the transformed system computing the k algebraically largest eigenvalues and
corresponding eigenvectors. The eigenvectors of (8) and (2) are identical. Once found, the eigenvalues
of the original problem are computed via

λ σ
γi

i

Z H
1  .                                                                   (9)
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Figure 2: Spectrum of the transformed eigensystem

The shift-and-invert spectral transformation results in a new eigensystem where the desired
eigenvalues are very well separated from the spurious eigenvalues. There is no need to add an
additional constraint equation such as done in [5], nor is there any need to modify ARPACK. A
disadvantage of this approach is that the user must have some knowledge of the problem to wisely
choose σ . In addition, it is now necessary to provide the action of ( )A BJ Ã

Jσ 1 x y . The matrix
A BJσ is indefinite and may be ill conditioned. However it is no more ill conditioned than the
matrices that arise in standard frequency domain finite element electromagnetics where the frequency
is a user-specified parameter and the right-hand side of (1) is non-zero.



5. Results

5.1  A Simple Sphere

The first problem is that of a simple homogeneous sphere. Although this seems trivial, it is in fact a
difficult problem from a numerical point of view due to the numerous degenerate eigenvalues. The 20
smallest eigenvalues for a 36 cell per radius sphere are shown in Table 1, along with the exact
solution. The sphere had a radius of 0.05855m and the speed of light is unity. The mesh had a total of
55296 hexahedral cells and the dimension of the eigensystem was N = 162528, the number of internal
edges in the mesh. A sigma of σ Z 2000 0.  was used to perform the shift-and-invert spectral
transformation.

Mode Exact Computed Percent Error
TM11 2196.39 2200.44 0.184
TM11 2196.39 2200.44 0.184
TM11 2196.39 2200.44 0.184
TM21 4368.84 4382.21 0.306
TM21 4368.84 4382.21 0.306
TM21 4368.84 4384.45 0.357
TM21 4368.84 4384.45 0.357
TM21 4368.84 4384.45 0.357
TE11 5888.69 5911.07 0.380
TE11 5888.69 5911.07 0.380
TE11 5888.69 5911.07 0.380
TM31 7214.14 7248.11 0.470
TM31 7214.14 7248.21 0.470
TM31 7214.14 7248.21 0.470
TM31 7214.14 7248.21 0.470
TM31 7214.14 7252.40 0.530
TM31 7214.14 7252.40 0.530
TM31 7214.14 7252.40 0.530
TE21 9688.19 9731.82 0.450
TE21 9688.19 9731.82 0.450

Table 1: Exact vs computed eigenavlues (ωωωω2) for 36 cell per radius sphere

The data in Table 1 was computed using the following ARPACK input parameters:

a) N = 162528
b) m = 20
c) WHICH = largest algebraic eigenvalues
d) ncv = 40
e) tol = 1.0e-5
f) maxit = 300

Although maxit was set to 300, only six iterations were required for convergence of all 20 eigenvalues.
The Jacobi-preconditioned conjugate residual method was used to evaluate ( )A BJ Ã

Jσ 1 x y  with a
residual tolerance of 1.0e-9. The total run time was 25 hours on a Compaq AlphaServer 8400 with a



theoretical peak performance of 880 Mflops. The run time was dominated by the cost of the conjugate
residual method and not by ARPACK or by the calculation of the finite element mass and stiffness
matrices.

5.2      A Linear Accelerator Induction Cell

The second problem is to compute the lowest eigenmodes of a linear accelerator induction cell. Of
particular interest is the magnitude of the electric field in the accelerating gap, as this determines
whether or not the particular mode will couple with the electron beam. A 33024 cell hexahedral mesh
is used to model the induction cell. Part of the cell is vacuum, and another part consists of oil with a
relative permittivity of ε r Z 4 5. . The input parameters to ARPACK were the same as for the sphere
problem above except that N = 90237 for this problem. Based on back-of-the-envelope estimations, a
sigma of σ Z 0 001.  was chosen for the shift-and-invert spectral transformation. A total of 5 IRAM
iterations were required for convergence of all 20 eigenmodes. The total run time was 15 hours on the
same Compaq AlphaServer 8400. The computed eigenvalues are shown in Table 2, naturally for this
problem there is no analytical solution for comparison. The column labeled ω 2  is the computed
eigenvalues of (2) using unity speed of light, and the column labeled Mhz is the calibrated resonant
frequencies of the induction cell.

Figure 3 shows the 1st, 5th, 13th, and 20th eigenmodes of the induction cell. The figures show electric
field magnitude. Although it may be difficult to discern from the figures, the 1st and 20th modes have
maximum field values in the accelerating gap and hence will couple strongly with the electron beam,
whereas the 5th and 13th modes are examples of modes that will not couple strongly with the beam.

ω2 Mhz
.00495 132.200
.01158 202.166
.01158 202.166
.01721 246.471
.02222 280.015
.02222 280.015
.02930 321.560
.02930 321.560
.03585 355.683
.03585 355.683
.05206 428.607
.05206 428.607
.05466 439.197
.05917 456.955
.05921 457.109
.05929 457.417
.05929 457.417
.07053 498.881
.07053 498.881
.08034 532.453

Table 2 : The 20 lowest eigenvalues and resonant frequencies for the induction cell



Figure 3: Selected eigenmodes for the linear accelerator induction cell. The geometry is clipped
so that the internal structure of the modes can be seen.
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